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Abstract

Artificial intelligence is introducing revolutionary changes in the field of cardiovascular 
imaging. Combining deep learning and cardiovascular imaging has achieved promising 
results for the screening and diagnosis of cardiovascular disease, outperforming 
conventional techniques and even radiologists in some tasks. Deep learning also aids 
in cardiovascular image processing, improving the efficiency of image analysis and 
providing diagnostic decision support to clinicians. In addition, deep learning allows 
traditional imaging modalities to achieve greater diagnostic potential.
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Description

Cardiovascular Disease (CVD) is the leading cause of death worldwide, accounting for 
approximately 32% of all deaths [1,2]. Early clinical screening and diagnosis is important 
for disease monitoring, individualized prevention, and treatment. Radiology imaging 
techniques are important tools for CVD screening and diagnosis. In this study, we 
will mainly focus on a few main approaches, including chest radiography, Computed 
Tomography (CT), and cardiac Magnetic Resonance Imaging (MRI). Generally, chest 
radiography is a rapid, inexpensive, and non-invasive medical technology used to 
evaluate cardiac size as well as pulmonary blood flow [3,4]. Cross-sectional imaging 
using CT or cardiac MRI is being increasingly used to evaluate cardiac anatomy 
and physiology. However, the accuracy of chest radiographs in diagnosing CVD is 
suboptimal because cardiac and hemodynamic changes may not be apparent in the 
early stage. The interpretation of CT or cardiac MRI images is time-consuming, 
energy-intensive, and cost-efficient. In addition, human errors are inevitable due to 
visual fatigue or a lack of experience in clinical practice. 

Artificial Intelligence (AI) is capable of performing tasks that require human 
intelligence. In recent years, AI has achieved remarkable success in the classification 
and interpretation of medical imaging, which facilitates the screening and detection 
of CVD [5,6]. Machine learning is the core of AI, as it can solve problems based on 
training data and programmed algorithms [7]. Deep learning is an advanced machine 
learning approach that is usually implemented using neural networks to characterize 
and learn higher-level features [8]. Due to its superior ability to analyze high-level 
features, medical image interpretation using deep learning is becoming a rising 
hotspot [9]. Deep Learning (DL) has demonstrated high efficacy in the classification, 
identification, and segmentation of cardiovascular images, which facilitates the image 
interpretation process. Considering the importance of early identification, this paper 
focuses on the application of DL in the screening and diagnosis of CVD. In the 
following section, we provide a literature study in detail.
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Automated screening and diagnosis of CVD could be conducted 
using deep learning classification algorithms. Our team has 
previously innovated an attempt to apply neural networks to 3255 
chest radiograph images for automatic screening for congenital 
heart disease, which showed good performance (The Area Under 
the receiver-operator characteristics Curve (AUC): 0.948) and was 
superior to that of radiologists [10]. In addition, the diagnostic 
accuracy of radiologists was improved with the assistance of AI. 
Wang et al., presented a two-stage approach that utilizes noninvasive 
cardiac MRI cine imaging for CVD screening, followed by further 
diagnosis using cine and late gadolinium enhancement imaging for 
11 types of CVD in 9719 subjects [11]. Using video-based deep 
learning algorithms, this approach achieved excellent performance 
(AUC: 0.988 in internal validation; 0.991 in external validation) 
and outperformed the experienced cardiologists. These deep 
learning works have greatly improved the efficiency and scalability 
of cardiovascular imaging interpretation, thereby contributing to 
early diagnosis, timely treatment, and improving patient prognosis.

Image segmentation using deep learning is a promising tool for 
interpreting cardiovascular function. Cardiovascular Magnetic 
Resonance (CMR) is considered the gold standard for assessing 
cardiac structure and function due to its outstanding soft-
tissue contrast and temporal resolution [12,13]. However, the 
image processing of CMR is time-consuming and requires high 
technical expertise from doctors. Deep learning can be used to 
automatically segment the left and right ventricles and atrium of 
CMR images, allowing for the further calculation of the sizes of 
the heart chambers, and the accuracy is close to that of clinical 
experts [14]. Goyal et al., provided an accurate and fast machine 
learning-based algorithm (Neosoft) for dynamic left ventricular 
volume measurement [15]. This machine learning model can 
automatically generate the time-volume curve of the left ventricle 
within 2.5 ± 0.5 min, which is significantly faster than manual 
analysis (43 ± 14 min per patient). In addition, Karr et al.,  
demonstrated that DeepLabV3+DCNN, using three versions of 
the ResNet-50 backbone, can be employed for automated left 
ventricular chamber quantification and subsequent strain analysis, 
which is useful for the early identification of cardiotoxicity [16]. 
Similarly, AI-derived cardiac parameters were also reported to 
show good performance in the diagnosis of acute myocarditis [17]. 
These advanced AI technologies allow for fast, accurate, and fully 
automated analysis of cardiac structure and function, and are not 
influenced by human factors, which can prompt the diagnosis 
of CVD. The implementation of deep learning algorithms also 
enables traditional imaging modalities to play a greater diagnostic 
potential. Coronary angiography is the established clinical 
standard for the measurement of Fraction Flow Reserve (FFR) for 
the diagnosis of coronary artery disease, but it is invasive. Based 

on the FFR obtained from invasive pressure-wire pullback along 
a vessel, deep learning algorithms, along with fluid dynamics, 
support Coronary Computed Tomography Angiography (CCTA) 
in providing a comparable estimation of FFR values. T Tang et 
al., compared the diagnostic value of CT FFR in 159 vessels from 
103 patients with suspected coronary artery disease, using invasive 
FFR as the reference standard [18]. The AUC for CT FFR was 
0.9, which is significantly higher than that of CCTA (AUC: 0.75). 
Similar conclusions were obtained by Norgaard et al., and Driessen 
et al. [19,20]. Yu et al., showed that the per-patient accuracy of CT 
FFR was 0.85 in identifying hemodynamically in-stent restenosis, 
suggesting that the deep-learning-based CT FFR provides the same 
effectiveness and feasibility for patients with stent implantation 
[21]. In addition, Late Gadolinium Enhancement Cardiac 
MR (CMR LGE) imaging is the gold standard for noninvasive 
myocardial tissue characterization, but it requires intravenous 
contrast agent administration. Zhang et al., presented a CMR 
virtual native enhancement imaging technology that provides a 
contrast agent-free approach to replace LGE, enabling faster and 
more cost-effective CMR scans [22].

Despite the vigorous development of AI, there are still many 
obstacles to the deployment of AI models at present, primarily 
including technical, social, economic, and legal challenges [23]. 
Specifically, technical challenges include the lack of large-scale 
high-quality data and labels, interpretation of AI-derived results 
and prospective clinical studies that validate the real-world utility 
of AI models. In addition, AI applications require substantial 
financial support, good interdisciplinary cooperation, and a good 
balance of regulatory safeguards and market forces. Given the 
ongoing efforts by all sectors of society, we believe that AI will 
provide efficient assistance to clinicians and patients in the future.

Conclusion

In conclusion, recent studies on deep learning applied to CVD 
screening and diagnosis have reported good performance, 
sometimes even surpassing that of radiologists in certain tasks. 
Deep-learning-based cardiovascular image processing and analysis 
can accurately and quickly obtain indicators, providing decision 
support for clinicians. In addition, deep learning enables traditional 
imaging modalities to realize their greater diagnostic potential. 
The application of these deep learning models may improve the 
performance of various diagnostic processes.
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