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Abstract

Objectives: The relative significance of predictive factors for cancer and Coronary 
Heart Disease (CHD) is still unclear. This study aims to identify and evaluate the 
risk factors contributing to the development of both conditions using the CatBoost 
machine learning algorithm. 

Methods: Data from twelve datasets of the 2009-2010 National Health and Nutrition 
Examination Survey (NHANES), incorporating both survey responses and laboratory 
results, were used. Separate CatBoost models were developed to predict cancer and 
CHD occurrences, by using Shapley Additive Explanations (SHAP), with the help of 
Recursive Feature Elimination with Cross-Validation (RFECV) and by adjusting class 
weights and model performance was assessed using Receiver Operating Characteristic 
(ROC) curves. 

Results: The datasets were combined to form a cohort of 5,012 participants, each 
with 24 selected features. The cancer prediction model achieved a ROC Area Under 
the Curve (AUC) of 0.76, with 13 selected features, yielding an accuracy of 0.70, 
sensitivity of 0.67 and specificity of 0.70. In contrast, the CHD prediction model 
achieved a higher ROC AUC of 0.87, with an accuracy of 0.83, sensitivity of 0.78 
and specificity of 0.83. Accordingly, top predictive features for each disease have been 
ranked and selected by the CatBoost algorithm. 

Conclusion: This study identifies key demographic and laboratory features significantly 
associated with cancer and CHD risk in the NHANES dataset. The findings suggest 
that these factors could be valuable for estimating individual risk and could inform 
machine learning models aimed at early detection and screening.
Keywords: Cancer . Coronary disease . Machine learning . Morbidity . Mortality

Introduction

Cancer and CHD are two major causes of morbidity and mortality worldwide 
and they share several common etiological factors. Both conditions are particularly 
prevalent in older populations [1-3]. While numerous predictive factors have been 
identified for each disease individually, the exact mechanisms through which these 
factors interact and the specific pathways involved in the simultaneous development of 
both cancer and CHD, remain incompletely understood. There is a subset of patients 
who develop both diseases concurrently, yet the specific predisposing factors that drive 
the co-occurrence of these conditions remain elusive, leaving a significant gap in our 
knowledge of the underlying mechanisms and risk factors. 

Machine learning is increasingly being applied across various medical disciplines and 
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has shown great impact in transforming clinical care. By using 
tabular, image and sound data, machine learning algorithms are 
capable of detecting patterns that can aid in diagnosing diseases, 
predicting prognoses and selecting treatment plans [4,5]. These 
algorithms have already demonstrated substantial utility in 
applications such as breast cancer diagnosis, personalized treatment 
plans based on genetic profiles and correlating brain function 
with imaging findings from Positron Emission Tomography/
Computed Tomography (PET/CT) in non-small cell lung cancer 
[6-8]. Moreover, machine learning has been successfully employed 
to predict short-term outcomes in spontaneous intracerebral 
hemorrhage by identifying key predictors, demonstrating its 
valuable potential in prognostic models [9]. 

Among the various machine learning algorithms, CatBoost (short 
for Categorical Boosting) stands out as a particularly powerful 
gradient boosting algorithm. Developed by Yandex, CatBoost is 
user-friendly and often requires less parameter tuning than other 
gradient boosting algorithms, such as XGBoost or LightGBM 
[10]. 

Within the NHANES dataset, certain subgroups have been 
diagnosed with either cancer, CHD, or both [11]. However, it 
remains unclear whether the factors that predict the development 
of cancer and CHD overlap or are distinct. Therefore, the aim of 
this study is to identify the predictors of cancer and CHD using 
comprehensive data from the NHANES survey and to evaluate 
the potential of the CatBoost machine learning algorithm in this 
task. By using the NHANES dataset and applying CatBoost, 
key predictive features for each disease are uncovered, aiming to 
support early detection and intervention strategies.

Material and Methods

General issues, collection and processing of data

The open-access database from the NHANES was obtained 
from its official website at the following web address: “https://
www.cdc.gov/nchs/nhanes/index.htm”. For this study, focusing 
on the period of 2009-2010, twelve datasets were downloaded 
from the NHANES website. These datasets included ALQ_F.
XPT (for alcohol use), CBC_F.XPT (for complete blood count), 
WHQ_F.XPT (for weight history), SMQ_F.XPT (for smoking 
and cigarette use), PAQ_F.XPT (for physical activity), MCQ_F.
XPT (for medical conditions), INQ_F.XPT (for income), 
CRP_F.XPT (for C-Reactive Protein; CRP), GHB_F.XPT (for 
Glycosylated Hemoglobin; HbA1c), DBQ_F.XPT (for diet and 
nutrition), TCHOL_F.XPT (for cholesterol) and DEMO_F.XPT 
(for demographics). Initially, these datasets were in XPT format, 
which were subsequently converted into Pandas data frames for 
further analysis. 

The next step involved filtering each dataset to include only the 

common SEQN values across all databases. SEQN, or "Sequence 
Number," serves as a unique identifier assigned to each participant 
in the survey. By focusing on the SEQN values present in all 
datasets, a combined dataset was generated that contained features 
from each database. This combined dataset was further processed 
by removing rows with any missing values, ensuring that only 
complete cases were included for the analysis. This clean, processed 
dataset was then saved in Excel format for subsequent steps. All 
data processing was conducted in Google Colab, utilizing Python 
programming, with the Pandas and Openpyxl libraries [12-14]. 

The variables tested as potential predictors in this study encompassed 
a wide range of demographic, behavioral and biological factors. 
These included age, gender, alcohol consumption, smoking 
history, dietary habits, body weight, physical activity level, income, 
family history of heart attack, previous cancer diagnosis, CHD 
diagnosis, white blood cell count, percentages of lymphocytes 
and neutrophils, hemoglobin levels, red cell distribution width, 
platelet count, mean platelet volume, CRP, total cholesterol and 
HbA1c. These variables were selected due to their relevance to the 
development of cancer and CHD, their possible links to chronic 
inflammation and accessibility in the NHANES database.

Development of CatBoost models to predict cancer or CHD

The descriptive analysis for this study was conducted using SPSS 
version 21.0.0 [15]. In the second phase, the CatBoost machine 
learning algorithm was employed to develop predictive models for 
the occurrence of cancer and CHD. Considering that the cancer 
and CHD subgroups comprised only a minority of the total cohort, 
the class weights in the CatBoost model were specifically adjusted 
to account for the imbalance between the minority and majority 
subgroups. This adjustment aimed to ensure that the model could 
learn effectively from the minority class data. 

To select the most important predictive features, the RFECV 
algorithm was used [16]. The RFECV algorithm is a feature 
selection method that iteratively removes the least important 
features from a model to find the most relevant subset of predictors. 
It starts by training a model using all features and ranks their 
importance based on a specified metric, such as feature weights or 
coefficients. The least important feature is then removed and the 
model is retrained. This process repeats until a predefined number 
of features remain or performance plateaus. Cross-validation is used 
to ensure the selected features improve the model's performance in 
a robust manner, preventing overfitting and making the selection 
process more reliable. In this study, to optimize the set of predictive 
features, the parameters of the RFECV algorithm were manually 
adjusted, particularly "select" and "min_features_to_select," using 
the F1 score for scoring.

The F1 score, used for scoring the RFECV algorithm in this study, 
is a performance metric used in classification that balances precision 
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accurate machine learning models to predict cancer and CHD risk 
based on the selected features.

Results

General findings 

A total of 5,012 cases were analyzed, with a gender distribution of 
50.3% female and 49.7% male. Additionally, 55.3% of the cases 
were categorized as overweight. Of the total sample, 4,343 cases 
(86.7%) had no diagnosis of either cancer or CHD, while 462 
cases (9.2%) were diagnosed with cancer and 157 cases (3.1%) 
were diagnosed with CHD. Co-occurrence of both cancer and 
CHD was observed in 50 cases (1%). Laboratory values for the 
participants were generally within normal ranges, with some 
variability. For example, the mean hemoglobin level was 14.1 g/dL 
(Standard error=1.5). The demographic characteristics, along with 
other features derived from questionnaires and laboratory tests, are 
presented in Table 1.

and recall [17]. It is the harmonic mean of these two metrics, 
making it particularly useful when the classes are imbalanced. It 
is calculated as: 

F1=2 × ((Precision × Recall) / (Precision+Recall)). 

Feature importance rankings were calculated based on the dataset 
and SHAP values were computed and visualized to evaluate the 
contribution of each feature to the predictions [18]. Additionally, 
confusion matrices were generated to assess model performance, 
along with key evaluation metrics, such as accuracy, sensitivity 
and specificity. ROC curves were also plotted and the AUC values 
were calculated to assess the overall predictive performance of the 
models for both cancer and CHD [19]. 

This second CatBoost analysis phase of the study was also 
completed using Google Colab, with the analysis performed 
in Python, utilizing several libraries, including Numpy, Pandas, 
Scikit-learn, CatBoost and Matplotlib [20-23]. These tools allowed 
for the efficient handling of the dataset and the development of 

Table 1: Demographics, questionnaire and laboratory-based data from NHANES study (2009-2010).
Features Abbreviation* n % Mean Standard Deviation (SD) Percentile 50

Total 5012 100

Age RIDAGEYR 49.6 17.8 49

Gender

Male 2489 49.7

Female 2523 50.3

Alcohol exposure ALQ101

12 or more drinks per year 3679 73.4

Less than 12 drinks per year 1330 26.5

Missing 3 0.1

Smoking exposure SMQ020

Smoked at least 100 cigarettes lifetime 2338 46.6

Did not smoke 100 cigarettes lifetime 2674 53.4

Diet habits DBD910

Number of frozen meals/pizza in past 30 days 5010 100 2.3 5.3 0

Missing 2 0

Weight status** WHQ030

Overweight  2772 55.3

Right weight 1996 39.8

Underweight 231 4.6

Missing 13 0.3

Physical activity-1 PAQ605

Vigorous work activity 923 18.4

No vigorous work activity 4089 81.6

Physical activity-2 PAQ620
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Moderate work activity 1787 35.7

No moderate work activity 3225 64.3

Income INQ140

Income from interest, dividend or rentals 1396 27.9

No income from interest, dividend or rentals 3578 71.4

Relative with heart attack MCQ300A

Present 593 11.8

Absent 4291 85.6

Asthma diagnosis MCQ010

Present 687 13.7

Absent 4319 86.2

Cancer diagnosis MCQ220

Present 512 10.2

Absent 4500 89.8

Coronary artery disease diagnosis MCQ160C

Present 207 4.1

Absent 4805 95.9

Diagnostic category n/e***

No cancer or coronary heart disease 4343 86.7

Cancer only 462 9.2

Coronary heart disease only 157 3.1

Both cancer and coronary heart disease 50 1

Laboratory Based

White blood cell count (× 10/mm3) LBXWBCSI 7.2 2.6 6.9

Lymphocyte percent (%) LBXLYPCT 30.3 8.6 29.8

Neutrophil percent (%) LBXNEPCT 58.4 9.6 58.8

Neutrophil to lymphocyte ratio (NLR) n/e*** 2.2 1.2 2

Hemoglobin (g/dL) LBXHGB 14.1 1.5 14.1

Red cell distribution width; RDW (%) LBXRDW 12.9 1.3 12.6

Platelet count (× 10/mm3) LBXPLTSI 240.1 64.9 232

Mean platelet volume; MPV (fL) LBXMPSI 7.9 0.9 7.9

C reactive protein; CRP (mg/L) LBXCRP 0.4 0.8 0.2

Total cholesterol (mg/dL) LBXTC 195.8 40.8 193

HbA1c (%) LBXGH 5.8 1 5.5

Note: General characteristics of the cases and summary of their laboratory data in the study. *: Abbreviation for the variable in the NHANES database; **: Weight 
status as perceived by the respondent; ***: Not eligible.

CatBoost machine learning model to predict cancer or CHD

The CatBoost machine learning model developed to predict cancer 
yielded a moderate AUC value of 0.76, while the model designed 
to predict CHD performed better, achieving a higher AUC value 
of 0.87. These AUC values, which reflect the model's ability to 
distinguish between positive and negative cases for both cancer 
and CHD, are visualized in Figure 1. Additionally, the sensitivity 

figure, also known as recall, that measures the proportion of 
actual positive cases that are correctly identified by the model, 
indicating its ability to detect true positives, was calculated to be 
0.67 for cancer and 0.78 for CHD, by using 13 and 12 predictive 
features respectively, as selected by the RFECV algorithm. A 
summary of efficacy metrics, revealed by the CatBoost model, 
for both cancer and CHD predictions is provided in Table 2.
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Figure 1: ROC Curves for cancer and Coronary Heart Disease (CHD) occurrence. Note: a) ROC curve for binary classification of cancer; b) ROC Curve for binary 

classification of CHD. The curve plots the true positive rate (sensitivity) against the false positive rate (1-specificity) at various threshold settings. An AUC value closer 

to 1 representing a better classification model. The dashed diagonal line represents the performance of a random classifier (AUC=0.5).

Table 2: Performance metrics of the cancer and CHD prediction models.

Endpoint AUC Accuracy Sensitivity Specifity Precision F1 score

Cancer 0.76 0.7 0.67 0.7 0.2 0.31

Coronary heart 
disease 0.87 0.83 0.78 0.83 0.14 0.22

Note: AUC: Area Under Curve; Accuracy=TP+TN/(TP+TN+FP+FN); where True Positives (TP): Correctly predicted positive cases; True Negatives (TN): Correctly 
predicted negative cases; False Positives (FP): Incorrectly predicted positive cases (actual negatives predicted as positives); False Negatives (FN): Incorrectly 
predicted negative cases (actual positives predicted as negatives); Sensitivity=TP/(TP+FN); Specifity=TN/(TN+FP); Precision=TP/(TP+FP); F1 Score=2 × 
(Precision × Sensitivity) / (Precision+Sensitivity). 

CatBoost machine learning model to predict cancer or CHD

The CatBoost machine learning model developed to predict cancer 
yielded a moderate AUC value of 0.76, while the model designed 
to predict CHD performed better, achieving a higher AUC value 
of 0.87. These AUC values, which reflect the model's ability to 
distinguish between positive and negative cases for both cancer 
and CHD, are visualized in Figure 1. Additionally, the sensitivity 
figure, also known as recall, that measures the proportion of actual 
positive cases that are correctly identified by the model, indicating 
its ability to detect true positives, was calculated to be 0.67 for 
cancer and 0.78 for CHD, by using 13 and 12 predictive features 
respectively, as selected by the RFECV algorithm. A summary of 
efficacy metrics, revealed by the CatBoost model, for both cancer 
and CHD predictions is provided in Table 2.

Feature importance of predictor variables in the CatBoost 
model

The optimal number of predictor variables that were selected by 
the RFECV algorithm and maximized the performance of the 
CatBoost models, in terms of sensitivity, specificity and accuracy, 
were identified as 13 for cancer and 12 for CHD. In the cancer 
model, the 5 most influential features were age, gender, financial 

status (income from interest, dividends, or rentals), Neutrophil to 
lymphocyte ratio and HbA1C levels, with mean SHAP values of 
0.84, 0.15, 0.11, 0.08 and 0.04, respectively. In the CHD model, 
the top 5 predictors were age, gender, platelet count, family history 
of CHD and Red Cell Distribution Width, with mean SHAP 
values of 1.60, 0.46, 0.32, 0.28 and 0.21, respectively. Refer to 
Figure 2, for mean absolute SHAP values for the cancer and CHD 
outcomes. 

Among the top 5 predictors for cancer; older age (in cases with 
and without cancer: 65 versus 48), female gender (52% versus 
50%), higher income (44% versus 26%), higher neutrophil to 
lymphocyte ratio (logarithmic transformation; 0.35 versus 0.30) 
and higher glycosylated hemoglobin (HbA1c; 5.86 versus 5.74) 
levels were associated with an increased likelihood of developing 
cancer. In addition, for CHD, older age (in cases with and without 
CHD: 69 versus 49), male gender (73% versus 27%), %), lower 
platelet counts (208000 versus 242000/mm3), a family history of 
heart attack (27% versus 12%) and higher red cell distribution 
width (RDW; 13.5% versus 12.9%) levels were identified as key 
risk factors, constituting the 5 top predictors, for the occurrence 
of CHD. Figure 3, displays the association directions of the top 3 
individual features with cancer and CHD. 
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assessments or additional diagnostic testing. 

It is well known that approximately 40%-50% of the risk for CHD 
and 10%-20% of the risk for common cancers can be attributed 
to genetic factors [24,25]. Given this strong genetic component, 
it is logical to consider genetic approaches for predicting cancer 
or CHD risk in otherwise healthy individuals. Employing such 
genetic risk models can encourage proactive lifestyle changes-such 
as improved diet and exercise habits-and enable early prophylactic 
interventions before disease development. Thus, any predictive 
model for the prediction of cancer or CHD risk, including ours, 
is expected to improve in accuracy by the integration of genomic 
data as additional predictive features. 

Genome-Wide Association Studies (GWAS) have identified 
around 450 high-risk genetic variants linked to various cancers 
and approximately 160 genome-wide significant loci (p<5 × 10⁻⁸) 
associated with CHD [26]. These genetic markers offer valuable 

Discussion

This study demonstrated that the primary predictors for cancer 
and CHD from the NHANES database, as identified through 
the machine learning models, are largely related to aging, 
sociodemographic factors and laboratory measurements. These 
findings suggest that these variables can be considered predisposing 
factors or correlates for the development of both cancer and CHD. 
As a result, the panel of predictors identified in this study has the 
potential to be used as an initial screening tool for assessing the 
risk of developing cancer, CHD, or both conditions. However, 
while our machine learning models achieved reasonable accuracy 
in predicting both diseases, the precision rates were low, at 20% 
for cancer and 14% for CHD. This indicates that any positive 
prediction should be interpreted with caution, as there is a 
significant chance it could be a false positive. Thus, in theory, while 
the model may be useful for initial risk assessment, its predictions-
particularly positive ones-should be validated through clinical 

Figure 2: Mean absolute SHAP value plots for cancer and coronary heart disease classification using the CatBoost model. Note: a) Mean SHAP value plot for cancer 

classification; b) Mean SHAP value plot for CHD classification. The x-axis represents the mean absolute SHAP values for each feature, showing their contribution 

to the model's prediction of cancer, or CHD. The plots illustrate the key predictors in the model. RIDAGEYR: Age; RIAGENDR: Gender; DBD910: Diet habits; 

INQ140: Income; MCQ300A: Relative with heart attack; LBXWBCSI: White blood cell count; LBXHGB: Hemoglobin level; LBXRDW: Red cell distribution 

width; LBXPLTSI: Platelet count; LBXMPSI: Mean platelet volume; LBXCRP: C-reactive protein; LBXTC: Total cholesterol; LBXGH: HbA1c; NLR: Neutrophil to 

lymphocyte ratio; Also, refer to Table 1 for more information about the predictors used in this study.  

Figure 3: Plot for cancer and CHD related features. Note: a) Age for cancer; b) Gender for cancer; c) Income for cancer; d) Age for CHD; e) Gender for CHD; f ) Platelet 

count for CHD. Top 3 predictor features for cancer and CHD occurrence are presented.
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additional cases and features, more accurate and discriminative 
predictive models could be developed for cancer and CHD. This 
study adds to the growing body of literature in medicine, where 
machine learning models can be useful in early prediction. 

One significant limitation of our study is the nature of the 
NHANES database and the way participants are recruited. 
NHANES is not a longitudinal study, meaning it does not involve 
long-term follow-up of participants. Each survey cycle is cross-
sectional, capturing data at a single point in time from a new 
representative sample for that cycle. As a result, cancer or CHD 
diagnoses in the dataset represent the presence of these conditions 
at the time of data collection, rather than reflecting a prospective 
observation of disease development over time. This makes it 
challenging to interpret our results fully for several reasons. First, 
causal associations cannot be inferred because the data lack a 
temporal dimension. Second, some of the predictor variables may 
be influenced by the outcomes (i.e., the presence of cancer or 
CHD) rather than serving solely as risk factors. 

The primary objectives of this study were twofold: To compare the 
feature importance of predictor variables and to test the utility of 
a general machine learning algorithm in predicting the occurrence 
of cancer and CHD. From the perspective of feature importance, 
the relevant predictors from the NHANES database for cancer and 
CHD occurrence were successfully ranked. Although reasonably 
performant binary classification models were developed for both 
conditions, their clinical utility is limited by the low Precision 
Rate and the non-temporal nature of the data. Future studies 
incorporating longitudinal and genetic data, involving many 
thousands of cases, could be analyzed using machine learning 
or neural network models to develop more accurate algorithms 
for the prediction of cancer and CHD. The development of such 
models would be promising from a public health perspective.

Conclusion

Various personal, demographic and laboratory features can predict 
the occurrence of cancer or CHD. Applying machine learning to 
larger datasets-especially those incorporating genomic features-
could lead to more accurate algorithms for classifying individuals 
at high risk of developing these diseases. Machine learning 
algorithms, using a methodology similar to that of this study, 
could be highly valuable for screening purposes.

Availability of Data and Materials

Available upon reasonable request. The open database for the 
NHANES study was used to collect data through its official 
website with the following web address; “https://www.cdc.gov/
nchs/nhanes/index.htm”.

opportunities for identifying individuals at high risk early on, 
especially as advances in technology make genetic testing more 
accessible and affordable. Incorporating genetic data into predictive 
models could significantly enhance their accuracy. So, as noted 
above, in the context of our study, integrating genetic information 
into our machine learning models could improve their predictive 
power for both cancer and CHD. 

In addition to genetic data, non-genetic clinical data have proven 
effective in quantifying the risk of cancer and CHD. For example, 
a Support Vector Machine (SVM) model has been used to assess 
CHD risk, achieving an AUC of 0.89, which demonstrates strong 
predictive capability using clinical, non-genetic inputs [27]. 
Similarly, a Gradient Boosting algorithm, utilizing laboratory, 
demographic and comorbidity data, reported an AUC of 0.761, 
further validating the utility of clinical data in predicting CHD 
risk [28]. In the field of lung cancer detection, machine learning 
models have also shown substantial promise. One machine 
learning algorithm applied in the National Lung Screening Trial 
demonstrated an AUC of 0.797 in the validation set, with a 
sensitivity of 0.830, indicating its effectiveness in detecting lung 
cancer cases [29]. These examples underscore the potential of non-
genetic, data-driven approaches, similar to mine, for identifying 
individuals at risk of these diseases. 

Aging is known to be associated with chronic inflammation, 
mediated by cytokines, which is one of the causal factors in the 
development of atherosclerosis and cancer. Chronic inflammation 
is a shared factor contributing to both cancer and CHD [30]. 
Other related factors, such as lymphopenia, leukocytosis and 
elevated glycosylated hemoglobin levels, may also occur alongside 
chronic inflammation and metabolic syndrome. These factors 
emerged as important predictors in our study, reinforcing their 
role in the pathogenesis of both cancer and CHD [31,32]. These 
findings highlight the interconnectedness of inflammation, 
metabolic syndrome and hematologic changes in the development 
of these conditions, justifying their use as predictive markers in 
machine learning models. 

In our study, the CatBoost machine learning algorithm exhibited 
performance metrics that were comparable to other models 
reported in the literature. The AUC values for cancer and CHD 
were 0.76 and 0.87, respectively, demonstrating a reasonable level 
of accuracy. These results are consistent with AUC values reported 
in prior studies. However, despite the strong performance in 
terms of AUC, our models yielded a substantial proportion of 
false positives in the predictions, which limits the clinical utility 
of the models. Nevertheless, our models successfully ranked 
and compared the importance of various features and this may 
prove useful in future longitudinal studies. With the inclusion of 
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