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Abstract

The Notch signaling pathway is one of the fundamental components of cellular 
signaling. This pathway regulates the choice of cell faith and can enhance proliferation, 
differentiation, and apoptosis. The role of Notch in cardiovascular system development 
and functioning is essential. Notch controls various aspects of normal cardiovascular 
maintenance and pathologies, among which there are pathological cardiac remodeling, 
ischemia, neoangiogenesis, and others. Atherosclerosis, which is a chronic inflammatory 
disease, is known for its complex pathogenesis and the variety of cell types involved. In 
every type of cell, Notch signaling has its specific features. Also, the growing body of 
evidence suggests that modulating different Notch elements, especially in T-cells, can 
be a promising strategy to counteract atherosclerosis. In this review, we summarized 
data on the Notch signaling in different cells during atherogenesis.  

Keywords:  Notch signaling •Atherosclerosis • CVD •Cell signaling • Cardiovascular 
disease 

Introduction

The Notch signaling is an essential component of cell-to-cell communication. This 
pathway manages the choice of cell faith and adjusts proliferation, differentiation, 
apoptosis, and other key functions of the cell. There are four isoforms of Notch 
receptors (Notch 1-4), and five Notch ligands (Delta-Like Ligand (Dll 1, 3, and 4), 
and Jagged-1 and 2) expressing in mammals [1]. A single precursor is synthesized for 
Notch receptors, which moves to the Golgi apparatus, and there is cleaved by a furin-
like protease into two subunits, extracellular and a transmembrane ones. After that, 
these subunits are transferred to the cell-membrane for the assembly [2]. The binding 
of a Notch ligand with its receptor launches the loss of extracellular part with the 
subsequent proteolytic cuts, the first by a disintegrin and metalloprotease (ADAM10 
and/or 17) and the second by a γ-secretase, a multiprotein complex membrane 
protease, resulting in the release of the active form intracellular Notch (NICD) [3]. 
In the “canonical” variant of Notch pathway, NICD moves into the nucleus, where it 
binds to Recombinant Binding Protein for the immunoglobulin region κJ (RBPJ) of 
transcription factors and thus controls the transcription of target genes. This mediates 
the displacement of co-repressors and the recruitment of Mastermind proteins (MAML 
1–3). Additional co-activators, such as p300 and PCAF are recruited to the NICD/
RBPJ/MAML complex, which allows controlling the transcriptional expression of 
the genes manageable by Notch. Transcriptional repressors from HEY (Hairy and 
Enhancer of Split with YRPW) and HES (Hairy and Enhancer of Split) families turned 
out to be best investigated Notch target genes [4]. In “non-canonical” variant of Notch 
signaling, the activity of NICD can be independent from RBPJ. Also, the pathway can 
be triggered by the activation of γ-secretase without binding with canonical ligand, 
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or Notch signaling is activated in the absence of the cleavage of 
the γ-secretase complex. Non-canonical Notch signaling include 
interactions with other crucial pathways, such as mTORC2 
(mammalian target of rapamycin complex 2)/Akt, Wnt/β-catenin, 
IKKα/β, and can also occur in mitochondria where Notch/PINK1 
(PTEN-induced kinase 1) complexes modulate mitochondrial 
metabolism promoting cell survival by activating the mTORC2/
Akt pathway [5,6].

Literature Review

Notch signaling in atherosclerosis

Atherogenesis: Atherosclerosis is a disease chronic inflammatory 
disease with complex pathogenesis, which is considered a precursor 
of a range of CVDs. Atherogenesis is characterized with the fatty 
streak formation on the inner vascular wall, which later develop 
into atherosclerotic plaques [7,8]. 

The atherosclerosis development probably starts with the 
endothelial injury. Endothelial Cells (ECs) are very sensitive, and 
can perceive various stimuli, such as modified lipid particles, blood 
flow impairments, and others. In norm, stable/laminar shear stress 
protects the endothelium contributing to an anti-inflammatory, 
vasodilatory, antithrombotic, and non-proliferative phenotype 
[9,10]. Instead, low and disturbed/oscillatory shear stress 
stimulates endothelial dysfunction. This is implemented through 
the production of pro-inflammatory cytokines and enhanced pro-
atherogenic genes transcription [11]. Low-Density Lipoprotein 
(LDL) particles are accumulated in the sub endothelial space, 
where they undergo the variety of modifications, such as oxidation, 
sialylation, and others. Among other effects, these modifications 
lead to an increased expression of adhesion molecules on the surface 
of ECs, such as Vascular Cell Adhesion Molecule-1 (VCAM-1), 
Intercellular Adhesion Molecule-1 (ICAM-1), and E-selectin, 
acting as chemioattractors for circulating monocytes and T 
lymphocytes [12,13]. After infiltration into sub-endothelium, the 
monocytes transform into macrophages, which, in turn, start to 
internalize modified LDL. By storing lipids, these cells become 
foam cells, which produce growth factors and cytokines. These 
molecules serve as an inflammatory response booster and recruit 
Extracellular Matrix (ECM) proteins- producing Vascular Smooth 
Muscle Cells (VSMCs). This results in the formation of fibrous, 
lipid-loaded plaques, which can become unstable and break away, 
leading to the formation of thrombus, and, subsequently, to 
myocardial infarction [14, 15]. 

The Notch pathway is involved in regulating the functioning 
of cells of all types that are implicated in atherogenesis. Stable/
laminar shear stress upregulates Notch 1, which is required for 
transcription of genes that remain endothelial function [16]. 
Other investigations revealed that stable/laminar blood flow 
favors the induction of Notch 1, which promotes maintenance 

of endothelial barrier function and upregulates the anti-apoptotic 
protein Bcl-2, thus protecting ECs against apoptosis [17]. Also, 
the reduced expression of Notch 1 in response to circulating 
lipids and pro-inflammatory cytokines, such as Tumor Necrosis 
Factor alpha (TNF-α) and Interleukin (IL)-1β, was shown to 
cause inflammatory molecules and monocytes recruitment. 
The protective role of Notch 1 in the endothelium is supported 
by in vitro observations that demonstrated the induction of 
dysregulation of Notch signaling in ECs by inflammation, which 
results in to NF-kB activation and induction of ICAM-1, VCAM-
1, and apoptosis [18]. The protective effect of 17-β-estradiol 
against TNF-α induced apoptosis requires Notch 1 activation was 
also shown by Fortini, et al [19]. However, the studies discussed 
so far are in contrast with other observations suggesting a pro-
atherogenic and pro-inflammatory role of the Notch pathway in 
the contest of endothelium [20].

Intra-plaque hemorrhage is a marker of plaque instability, and it 
has been suggested that intra-plaque hemorrhage and rupture of 
the fibrous cap is associated with increased microvascular density. 
A complex interplay between Dll4/Jagged-1/Notch 1 signaling, 
inflammatory cytokines, and growth factors determines the extent 
of angiogenesis and, in particular, the number of new branches 
arising from pre-existing blood vessels. It follows that any factor 
that alters Notch activity in atherosclerotic plaques can influence 
plaque angiogenesis and hemorrhage [21].

Notch in endothelial cells

The following elements of Notch pathway are expressed in ECs: 
Notch 1, 2, and 4 receptors and Dll1, 4, Jagged 1, 2 ligands [22]. 
In various studies, Notch is shown to counteract the inflammatory 
cytokines-induced endothelial dysfunction. Both in vivo and in 
vitro studies are consistent with the finding that Notch signaling 
can be inhibited, and levels of intercellular adhesion molecule-1, 
vascular cell adhesion molecule-1, as well as apoptosis, can be 
induced by inflammatory cytokines via mechanism involving 
Nf-kB [23]. It was also shown that the treatment of human vein 
ECs with serum from heart failure patients with increased levels of 
inflammatory markers inhibits Notch 1 and 4 activations. Recent 
studies have shown the anti-inflammatory role of Notch illustrated 
by the inhibition of miR155 synthesis by activation of Notch 1 
in bone marrow-derived EC. This miRNA is involved in eNOS 
downregulation and NF-κB activation [24,25].

Vascular regions with the altered blood flow and low shear stress 
are more vulnerable for atherosclerosis lesion formation. In 
accordance with other studies of a shear stress Notch modulation, 
the decreased expression of Notch pathway components was found 
in atheroprone regions of mouse aortic arch [26]. This finding 
contributes to the suggestion that disturbed blood flow could 
prepossess those areas to atherosclerosis via influencing Notch 
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3 signaling resulting in the transcription of genes coding 
pro-inflammatory factors that may enhance plaque burden, 
progression, and thrombogenicity. It was also shown that Dll4-
dependent activation of Notch signaling in macrophages leads 
to an increased inflammatory response [37,38]. Treatment of 
with pro-inflammatory stimuli, e.g., lipopolysaccharide, which 
stimulates the M1 pro-inflammatory phenotype, and triggers the 
transcription of Dll4, Jagged-1, and Notch 1. Conversely, Notch 
inhibition appears to increase the polarization of macrophages 
toward an anti-inflammatory M2 phenotype [39].

Notch as a target

Example of cancer: The understanding of the involvement 
of Notch signaling into the pathogenesis of atherosclerosis is 
insufficient. The good example of detailed knowledge of role of 
the Notch signaling is cancerogenesis. The main aspect of Notch 
inhibition in cancer were considered Gamma Secretase Inhibitors 
(GSIs), which are a heterogeneous group of small molecules able to 
avert the γ-secretase enzymatic complex-mediated Notch cleavage 
[40]. At first, GSIs were developed on the basis of their effect on 
Notch 1, but it can affect the cleavage of other Notch paralogs 
or interfere with other pathways. Several GSIs are currently 
involved into Phase I and/or II clinical trials in cancer patients. 
Targeting Notch in the context of atherosclerosis could result to 
be more complex compared with the oncology setting in which 
Notch inhibition interferes with growth of every solid tumour and 
leukaemia studied so far [41,42].

Atherosclerosis: In vivo studies have shown the ability of GSIs to 
interrupt the atherogenesis process. Systemic administration of 
GSI (LY411,575 0.2, and 1.0 mg/kg/day for 8-weeks) inhibited 
Notch signaling in ApoE-deficient mice on a high fat diet and 
decreased total plaque areas in the aortic sinus [43]. Moreover, 
lowered levels of ICAM-1 and migration ability were shown in 
macrophages obtained from these mice. Effects appeared to be 
dose-dependent: 0.2 mg/kg/day did not cause loss weight and 
alterations of intestine and thymus, while 1 mg/kg/day dose caused 
intestinal and immunologic toxicity [43]. This allows suggesting 
that only low doses of GSI could be used long term without 
adverse effects. Thus, the use of GSI for atherosclerosis treatment 
can weaken the inflammatory activities of macrophages. The 
resulting effect on atherosclerosis progression would depend on 
how the treatment affects the complex interplay between acquired 
and innate immunity, and thus, the balance between pro- or anti-
atherosclerotic T cells [44]. As for macrophages, mesoporous silica 
nanoparticles containing GSIs could be used to specifically deliver 
these molecules to these cells. Also, a specific approach to block 
Notch and inflammation in macrophages may be realized by cell-
specific delivery to macrophages of Notch inhibitors miRNAs 
using siRNA loaded exosomes [45]. GSIs-coated stents could be 

signaling. Thus, the treatments with a pure heart rate inhibitor 
ivabradine, which can potentially modulate shear stress, up 
regulates genes of the Notch pathway and reduce the expression 
of pro-apoptotic and pro-inflammatory genes in the endothelium 
of aortic arch of Apo E-deficient mice [27]. Also, the reduced 
expression of miRNA126-5p was shown in atheroprone regions of 
aortic arch of Apo E deficient mice. This links the shear stress and 
Notch regulation, contributing to the crucial role of a functional 
Notch signaling for the repair of the endothelium. Downregulation 
of miRNA126-5p by low shear stress leads to up regulation of 
Dlk1 which, by inhibiting Notch 1 signaling, interferes with ECs 
proliferation needed for the repair of endothelium damages caused 
by dyslipidaemia [28,29].

Notch in vascular smooth muscle cells

Vascular Smooth Muscle Cells (VSMCs) are a major cell type in 
the vascular media. In VSMCs, the Notch signaling is mediated 
by Notch 1, 2, 3, and the ligand Jagged-1. Due to the insufficient 
differentiation of VSMCs they can switch their phenotype 
under the effect of various circumstances, such as inflammation, 
in response to which the contractile/quiescent can be changed 
to a secretory/proliferative [30]. After this transition, VSMCs 
start to produce pro-inflammatory molecules. This is a hallmark 
of atherosclerotic lesions formation. However, the molecular 
mechanisms underlying this phenotypic switch. In vitro and in 
vivo studies revealed the interaction between Jagged-1-mediated 
Notch activation and the trans differentiation of VSMCs induced 
by IL1β [31-33]. Other studies suggest that the Jagged1/Notch 
3 axis promotes the VSMCs contractile phenotype and NF-
kB-mediated inhibition of Notch 3 favors the transition from a 
contractile to a secretory, pro-inflammatory phenotype [34]. An 
inhibition of VSMCs proliferation in humans through via cell-
cycle arrest, as well as the localization of high levels of Notch 2 to 
the non-proliferative zone of injured arteries was demonstrated to 
be caused by Jagged-1 mediated activation of Notch 2 [35]. Also, 
Aquilla et al. have shown the reduction of contractile phenotype 
and the induction of pro-inflammatory markers in association 
with low levels of Jagged-1 and high levels of Dll4 with cholesterol 
accumulation in VSMCs of rat aorta [31]. Moreover, active Notch 
inhibits apoptosis of VSMCs. Notch 1 is potentially involved in 
proliferation and cell survival in the context of vascular injury. 
Thus, it was also shown that perivascular delivery of siRNA for 
Notch1 inhibited neointimal formation and VSMCs migration 
and proliferation [36].

Notch in macrophages

Activated macrophages are extremely important for the 
atherosclerosis development. Notch signaling triggers a pro-
inflammatory phenotype in macrophages. Treatment of 
macrophages with IL-1β stimulates Dll4-mediated Notch 
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Discussion 

Atherosclerosis is a chronic inflammatory disease with a complex 
pathogenesis. In every stage of this disease, Notch signaling acts in 
different ways in various cell types. Notch activation stimulates a 
pro-inflammatory M1 phenotype in macrophages at the expense of 
the M2 anti-inflammatory subtype, and thus induces atherogenesis. 
However, there are still big gaps in our understanding of particular 
molecular mechanisms, but strong evidences revealed that the 
Dll4/Notch 1 axis is pivotal in favoring M1 polarization, while 
blocking M2 immunosuppressive macrophages and their cytokines 
[4,39]. T-cells have two opposite effects, they are able to protect 
from atherosclerosis and promote the development of the disease 
as well. The differentiation of T-cells is regulated by the interaction 
of Notch ligands Dll1, Dll4, Jagged-1, Jagged-2 on APCS with 
Notch receptors on T-cells. APCs expressing Dll1 or Dll4 induce 
the differentiation toward pro-atherosclerotic Th1 whereas Jagged 
ligands instruct T-cells toward the less inflammatory Th2 subtype 
[58,59]. Also, Jagged mediates the inhibitory activity of MDSCs 
on CD4 and CD8 T-cells. Considering Tregs, Notch signaling 
is required for their differentiation from naïve T-cells, whereas 
in already established Tregs Notch mediates the differentiation 
toward a Th1-like inflammatory phenotype [60]. However, as 
we mentioned above, the direct mechanisms of the particular 
role of Notch in these transitions remains unclear. It can be 
proposed that Notch potentially promote atherogenesis through 
stimulation of Th and CD8 cells formation. All this leads us to 
the conclusion that modulation of Notch pathway could be a 
promising strategy to prevent. Thus, for example inhibition of 
the Notch pathway can be beneficial because of the consequent 
lowering of inflammation of the vascular wall via interfering with 
the production of cytokines from M1 macrophages and with Th1 
cells infiltration in the plaque [61]. In principle, this strategy could 
have the advantage of increasing the immunomodulatory activity 
of M2 macrophages without depleting anti-inflammatory Tregs 
in the plaque. Tregs participates in the range of ongoing clinical 
trials on type I diabetes, graft transplantation, and others. Mostly, 
the naturally occurring FoxP3+Tregs from patients, followed by 
in vitro expansion and reinfusion are taken for such trials [62]. 
What is important for our exact topic, is an observation made on 
murine models stated that adoptive transfer of Tregs have reduced 
atherosclerosis [63, 64]. 

Conclusion 

This proposes the beneficial effect of the same approach in patients. 
Another promising strategy consists of preventing a reduction of 
Notch 1 caused by turbulent shear stress or dyslipidemia or low 
estrogen conditions. This way, endothelial dysfunction can be 
reduced, and, consequently, plaque formation in atheroprone areas 
of the aortic endothelium can be lowered, too. Heart rate reducing 

used to prevent re-occlusion in some patients, after percutaneous 
intervention, since Notch could be also involved in restenosis 
due to its effect on promotion of vascular smooth muscle cells 
proliferation [46]. 

Interesting observation was made on the sulindac, a non-steroidal 
anti-inflammatory drug, which prevents the development of with 
triple negative breast cancer through the Notch suppression in 
cancer stem cells without inhibiting Notch expression or cleavage 
in murine T-cells. This data contributes to the potential beneficial 
effect of sulindac on the atherosclerosis, especially on the regulation 
of Notch signaling in macrophages [47].

The use of blocking antibodies can be a promising approach, 
but for developing distinct targeting it is necessary to refine our 
knowledge of the role of each receptor and ligand in each exact 
cell of both innate and adaptive immune system in atherogenesis 
[48]. For now, blocking antibodies against Dll4, Notch 1, Notch 
2, or Notch 3 have been already tested in clinical trials (phase I) 
in patients suffering from cancer. Also, this can be important for 
patients with Peripheral Artery Disease (PAD), whose intraplaque 
levels of Dll4 mRNA is potentially linked to the disease progression 
[49]. The doubts on such treatment safety were resolved due to the 
common expression of Dll4 in the vasculature and the immune 
system. After 12 weeks of agents blocking Dll4 administration no 
toxicity was observed in one study on murine model, but other 
authors admitted adverse effects in the liver [50,51]. Heart failure 
was observed in some cancer patients in response to administration 
of anti-Dll4 antibody [52,53]. Anti-Jagged-1 immunotherapy was 
shown to suppress myeloid-derived suppressor cells and overcome 
tumor-induced tolerance by activating T-cell, thus proposing a 
protective role of Jagged-1-mediated signaling in atherosclerosis 
[54]. This is also supported with the observed association between 
slower progression of disease in PAD patients and high levels 
of Jagged-1 mRNA intraplaque [55]. Current understanding 
was formed almost on the studies on animal models or cellular 
culture. Even in humans, the status of Notch signaling has been 
investigated only in a small number of carotid arteries. 

The most serious obstacles of targeting Notch in atherosclerosis are 
the variety of Notch implications in different cell types. An active 
Notch signaling is crucial for endothelial protection endothelium 
from dysfunction driven by inflammation and for maintaining the 
non-proliferative/contractile state of VSMCs [56,57]. However, 
Notch activation within macrophages in plaques is linked to 
the inflammatory and unstable plaque phenotype. This can 
be overcome by the specific targeting of each Notch signaling 
component consistent with the cell type. So, the identification 
of the exact role of each components of the Notch pathway in 
the pathophysiology of atherosclerosis is an essential step for the 
development of novel therapeutic strategies targeting Notch.
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drugs, miRNA, or specific estrogen receptor agonist could be used 
to prevent Notch 1 downregulation in these areas. To sum up, we 
can conclude that targeting elements of Notch signaling pathway 
can be a promising strategy to counteract atherosclerosis, but there 
are still some obstacles have to be overcome.
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